Готово, можно копировать.
РЕШУ ЦТ — математика ЦЭ
Углы
1.  
i

На ри­сун­ке изоб­ра­же­ны раз­вер­ну­тый угол AOM и лучи OB и OC. Из­вест­но, что \angle AOC=107 гра­ду­сов, \angle BOM=113 гра­ду­сов. Най­ди­те ве­ли­чи­ну угла BOC.

1) 73 гра­ду­сов
2) 67 гра­ду­сов
3) 17 гра­ду­сов
4) 40 гра­ду­сов
5) 23 гра­ду­сов
2.  
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 210°. Най­ди­те гра­дус­ную меру мень­ше­го угла.

1) 150°
2) 15°
3) 30°
4) 10°
5) 105°
3.  
i

На ри­сун­ке две пря­мые пе­ре­се­ка­ют­ся в точке О. Если \angle AOC плюс \angle BOC плюс \angle BOD = 300 гра­ду­сов, то угол BOC равен:

1) 120°
2) 80°
3) 60°
4) 20°
5) 40°
4.  
i

На ри­сун­ке a || b, \angle1=68 гра­ду­сов, \angle2=\angle3. Най­ди­те гра­дус­ную меру угла 4.

1) 34°
2) 68°
3) 22°
4) 56°
5) 35°
5.  
i

Из точки A к окруж­но­сти с цен­тром O про­ве­де­ны две ка­са­тель­ные AB и AC, где B и C  — точки ка­са­ния. Через точки C и O про­ве­де­на пря­мая, ко­то­рая пе­ре­се­ка­ет ка­са­тель­ную AB в точке M (см. рис.). Най­ди­те гра­дус­ную меру угла 1, если ∠AMC  =  44°.

1) 30°
2) 46°
3) 22°
4) 44°
5) 23°
6.  
i

Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла 1 тре­уголь­ни­ка АВС.

1) 45°
2) 50°
3) 55°
4) 60°
5) 65°
7.  
i

Гра­дус­ная мера угла ABC равна 112°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 7 (cм. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.

8.  
i

Гра­дус­ная мера угла ABC равна 126°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 6 (см. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.